Epidural Analgesia

When bad catheters happen to good anesthetists.

Michael Rieker, DNP, CRNA, FAAN
Director, Nurse Anesthesia Program
Wake Forest School of Medicine

History of Epidural Catheters

- 1901 First epidural injection
- 1931 Aburel- silk ureteral catheter for OB
- 1930 – 1950: random materials available to individual practitioner
- 1950-1960: 1mm PVC cut from industrial roll and sterilized.
- 1962: Lee’s catheter-smooth tip, side hole @ 1cm

Safer than general (?)… but not without risk

- 145,580 epidurals administered
 - intravascular injection = 1 in 5,000 (0.02%)
 - intrathecal injection = 1 in 2,900 (0.035%)
 - subdural injection = 1 in 4,200 (0.024%)
 - high or total spinal block = 1 in 16,200 (0.006%)

Safer than general (?)… but not without risk

- 19,259 deliveries; neuraxial labor analgesia rate was 75%; overall failure rate was 12%
 - After adequate initial placement, 6.8% required replacement. (1.5% had multiple replacements)
 - Intravenous placement - 6% (40% were made functional)
 - Wet tap-1.2%
 - The incidences of overall failure, intravenous catheter, wet tap, inadequate analgesia and catheter replacement were lower in patients receiving combined spinal-epidural analgesia.
 - For cesarean section, 7.1% of pre-existing labor epidural catheters failed and 4.3% of patients required conversion to general anesthesia. Spinal anesthesia for cesarean section had a lower failure rate of 2.7%, with 1.2% of the patients requiring general anesthesia.

Our goals:

- Pick a winner
- Get it in
- Keep it in
- Make it work
- Respond when it goes in the wrong place
- Pull it out
Types of Catheters

- **Material**
 - Polyamide Nylon (Braun, Portex)
 - Spring wound polyurethane polymer (Arrow)
 - Hybrid (Braun Soft-tip)

- **Orifices**
 - Single end hole
 - Multiple side holes

Nylon catheters

- Greater tensile strength
- More often associated with multiple side orifices
- Stiff
- Greater incidence of venous cannulations, paresthesias

Soft catheters

- Greater ease of threading
- Resistant to kinking
- Less paresthesias and vein cannulations
- Some require stylet
- Usually with single orifice
- More likely to curl
- Weaker; prone to becoming lodged, separated, and possibly broken upon withdrawal

Arrow Flex-Tip Cath

Catheter comparison

<table>
<thead>
<tr>
<th></th>
<th>Portex</th>
<th>Arrow (Soft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paresthesia</td>
<td>39</td>
<td>3</td>
</tr>
<tr>
<td>Vein Cannulation</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Inability to insert</td>
<td>5 (*ns)</td>
<td>0</td>
</tr>
</tbody>
</table>
Catheter Strength

Anesth Analg 2001; 92: 246–8

Manufacturer	Reported malfunctions
Arrow | 248
Braun | 114
Abbott | 75
Baxter | 31
Smith | 25
Portex | 20
Epimed | 17
Becton Dickson | 2

d

Multi-orifice catheters

- Better spread
- Potential for Multi-compartmental or partial block
- Unilateral block half as frequent than with single-orifice catheters (8% vs. 16%)

- Significantly less unilateral block or unblocked segments

To work well, a continuous infusion pump has to act like a bolus infusion device.

Single-orifice catheters

- Better spread to sacrum
- “...epidural catheter design does affect the distribution of solutions in the epidural space. Single orifice epidural catheters compared favourably with multi-orifice catheters, resulting in more even distribution and sacral extension of dye.”

Our goals:

- Pick a winner
- Get it in
- Keep it in
- Make it work
- Respond when it goes in the wrong place
- Pull it out

Does position matter?

- ~100 patients each sitting or lateral
- Vein cannulation 16% in sitting vs. 4% in lateral position

Are all spaces created equally?
Where do catheters go?

- Deviation from midline is more likely vein cannulation or paresthesia.
- 20% of catheter tips lay outside the lateral margins of the vertebral bodies.
- Lateral foramen: catheter deviation relative to distance inserted.

Where do catheters go?

- Catheters track more straight into space if inserted at 50° vs. 90°.

Where do catheters go?

Insertion vs. coiling

- Fluoroscopy, paramedian approach
- Started at T9 reached to either T6-7 (obtuse 60%) or T7-8 (acute 40%).

<table>
<thead>
<tr>
<th>Coiling Length</th>
<th>Acute</th>
<th>Obtuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>4.9</td>
<td>7.4</td>
</tr>
<tr>
<td>Min-Max 95% CI</td>
<td>3.8-6</td>
<td>6-8.7</td>
</tr>
</tbody>
</table>

Out of sight... out of epidural space?

Lateral catheter = unilateral block

Double, double, \textit{Coil} and trouble

- Coil / knot
- Arrow:
 - 7 cephalad
 - 3 caudad
 - 1 same space
- Portex
 - 3 cephalad
 - 3 same
 - 1 caudad

Double, double, \textit{Coil} and trouble

- 19ga Arrow Flex-Tip in 45 patients
- median coiling length- 2.8 cm (1.0–8.0 cm)
- Only 6 (13\%) threaded >4 cm without coiling
Double, Double, Coil and Trouble

- Pain & sensory loss in thigh
- Catheter coiled around L3 nerve root
- Stretched and broke on withdrawal

Double, Double, Coil and Trouble

- Catheter inserted 9 cm.
- Resistance on withdrawal. Steady pressure finally removed catheter (somewhat painfully)

Double, Double, Coil and Trouble

- Catheter inserted 8 cm.
- Attempt to pull back to 5 cm met with resistance.
- Knot and loop found at 7.5 cm

Huang, J. Another case of knotting of an epidural catheter. AANA J. 2010;78(2):93-94.

Where do catheters go, Up or down?

- Direction of insertion does not make much of a difference.
- 45 patients. Surgery affecting sacral nerves
- Catheters: half up; half down.
- No difference in onset time, duration, anesthetic level, and analgesic effect

Catheter shearing

- Don’t withdraw through needle
- Patient movement may cause shearing
Improving technique

- Ultrasound guidance to find ES in pediatric patients.
- US correlated 0.88 with conventional LOR
- Ultrasound estimation of depth significantly improved placement rate

Our goals:

- Pick a winner
- Get it in
- **Keep it in**
- Make it work
- Respond when it goes in the wrong place
- Pull it out

Disconnection

- Variety of connectors available.
- Careful with caustic antiseptics
- If meniscus moves/moved- whole cath may be contaminated
- 2% would reconnect
- 15% clean the outside and reconnect
- 4% would cut and reconnect
- 44% would clean, cut, and reconnect
- 35% would remove the catheter.
Disconnection

- Lockit device holds catheter securely at skin.
- Reduces, but does not prevent movement-related failure

Epidural failure

- 125 patients with surgical epidurals
- 25% failed.
- 45% of failed due to dislodgement

<table>
<thead>
<tr>
<th>CT scan region</th>
<th>Success</th>
<th>Failure</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin to epidural space</td>
<td>40</td>
<td>97</td>
<td><0.001</td>
</tr>
<tr>
<td>Skin to peritoneal cavity</td>
<td>51</td>
<td>80</td>
<td>0.008</td>
</tr>
<tr>
<td>Anterior-posterior distance of catheter to skin</td>
<td>30</td>
<td>31</td>
<td>0.82</td>
</tr>
<tr>
<td>Anterior-posterior distance of catheter to skin</td>
<td>30</td>
<td>31</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Where do catheters go?

- Pull out-
- Skin to epidural space distance increases when sitting lateral.
- Most pronounced in obese.

Our goals:

- Pick a winner
- Get it in
- Keep it in
- Make it work
- Respond when it goes in the wrong place
- Pull it out

Secured to skin or epidural space?

- Lockit device holds catheter securely at skin.
- Reduces, but does not prevent movement-related failure
Why do they stop working?

- Air or saline for LOR?
- A 31-year-old primip with L3-L4 labor epidural. 4 hours after catheter placement - constant, severe, sharp, bilateral subscapular back pain with radiation to left shoulder and arm that started acutely after pressing the PCEA button.

What if it’s “iffy”?

- Important to calculate depth in epidural space.
- For patchy block, add bolus; if no relief, withdraw catheter 1 cm.
- Maintain at least 3 cm in space for multi; at least 2 cm for single orifice.

Our goals:

- Pick a winner
- Get it in
- Keep it in
- Make it work
- Respond when it goes in the wrong place
- Pull it out

Intravenous Placement

- Lateral situation?
- Collapsible - test passive aspiration
- Appropriate to withdraw, flush, salvage
- Expand space - 2% vs. 16% incidence of venous placement
- Pre-flushed catheter - takes 2x as long to identify IV placement
 - Bell, O'Connor & Leslie.. Anaesthesia & Intensive Care. 35(6):932-8, 2007

Unintentional IV Injection

- ↑HR 20-30 bpm (epinephrine)
- Patient complaints:
 - “ringing” in the ears
 - dizziness
 - tinnitus
 - circumoral numbness

*Initial study used non-pregnant patients
Speaking of Intravenous Placement… test dose

- Isoproterenol to avoid α-effect of epi
- HR response non-specific in labor
- Careful about multiple repeats
- With dilute solutions following CSE, test for IT placement only
- T-wave changes

Speaking of Intravenous Placement… test dose

- Meniscus test
- Inject air, then saline
- Hold catheter up
- Dropping meniscus = epidural placement
- Hold catheter down
- Continuing flow = subarachnoid or vein
- Return of bubbles + outflow that stops = epidural

Where do catheters go?

- Subdural- high, patchy block, horner's syndrome; multi-compartmental catheter

Subdural catheter- Railroad Tracks

Subdural catheter- Railroad Tracks

Characteristics of Subdural placement
Characteristics of Subdural placement

- Excessive spread of block with:
 - Slow onset > 20 min.
 - CV instability
 - Motor sparing with sensory block
 - Patchy/asymetrical block
 - Respiratory failure
 - Facial/head involvement

Where do catheters go?

- Through dura
- Contrary to intuition, CSE does not increase subdural placement.
- 100 patients; eposcan vs. conventional touhy. No dural puncture of catheter

Where do catheters go?

- Subarachnoid

<table>
<thead>
<tr>
<th></th>
<th>Portex</th>
<th>Arrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact dura</td>
<td>0/300</td>
<td>0/300</td>
</tr>
<tr>
<td>Occult 17ga hole</td>
<td>6/33</td>
<td>1/14</td>
</tr>
<tr>
<td>Obvious 17ga hole</td>
<td>1/35</td>
<td>0/90</td>
</tr>
<tr>
<td>25ga CSE</td>
<td>0/90</td>
<td>0/90</td>
</tr>
</tbody>
</table>

Subarachnoid catheter; What next?

- Survey in UK. 176 units. 144 of which have written guidelines
- 28% place catheter, 31% give option]
- Rationale: avoid potential for additional dural puncture and provide immediate analgesia
- 71%: EBP only after conservative measures fail for PDPH

Baraz R, Collis RE. The management of accidental dural puncture during labour epidural analgesia: a survey of UK practice. Anaesthesia. 60(7):673-9, 2005

Where do catheters go?

- Subarachnoid
- Decision tree- thread catheter

Where do catheters go?

- Subarachnoid Catheter vs. PDPH
- Efficacy increases with duration left in

<table>
<thead>
<tr>
<th>Strategy</th>
<th>PDPH Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace epidural</td>
<td>80%</td>
</tr>
<tr>
<td>IT catheter, removed @ delivery</td>
<td>30%</td>
</tr>
<tr>
<td>IT catheter, left for 24 hours</td>
<td>3%</td>
</tr>
</tbody>
</table>

Responding to Problems

- Intrathecal “epidural” catheter
- Intrathecal injection possibly 200 mg of lidocaine and 61 mg of bupivacaine
- Apnea and fixed dilated pupils

20ml cerebrospinal fluid was replaced with 10 mL of NS and 10 mL of LR
- Spontaneous respiration 5 min later, extubated in 30 min. No deficits or PDPH

Responding to Problems

- Inadvertent intrathecal drugs (bupivacaine, lido, chloroprocaine) all associated with cauda equina syndrome.

- Immediate injection of 10ml PF saline will help to dilute and has been shown to decrease incidence of subsequent PDPH.

Inadvertent subarachnoid injection

- Tsui, Ban C. H. MD, MSc, FRCP(C)*; Malherbe, Stephan MB, ChB, MMed, FCA(SA)*; Koller, John MD, FRCP(C)*; Aronyk, Keith MD, FRCS(C)† Anesthesia & Analgesia (2004) 98(2) 434-43 Reversal of an Unintentional Spinal Anesthetic by Cerebrospinal Lavage

Our goals:

- Pick a winner
- Get it in
- Keep it in
- Make it work
- Respond when it goes in the wrong place

- Pull it out

What goes up must come down; what goes in...

- Removal complications
- Arrow catheter stretches significantly more and breaks at lower weight than nylon

- Soft catheters appear in numerous case reports lodged/unable to be removed
Reinforced wire catheter problems

- Catheter stuck.
- Patient placed into the left lateral decubitus position and the catheter was removed without difficulty.
- However, it was noted that the catheter reinforcing wire had become uncoiled at the distal end and remained inside the patient.
- The wire was successfully withdrawn with steady traction.

Bastien JL, McCarroll MG, Everett LL. Uncoiling of Arrow Flextip plus epidural catheter reinforcing wire during catheter removal: an unusual complication. Anesthesiology. 98(2):554-5, 2004

What goes up must come down; what goes in...

- Inadvertent intrathecal placement, with inability to remove catheter immediately after placement.
- Epidural placement with immediate attempt to withdraw, but unable.
- Catheter left in place for 3 days, with daily attempts to remove, until finally removed.

What goes up must come down; what goes in...

- Patient in lateral position for withdrawal. Resistance felt before catheter broke without any significant stretching.
- Allowed the patient to relax for 3 hours, placing the patient in the lateral decubitus position, and placing continuous tension on the catheter itself so as to let it "work its way out".

What goes up must come down; what goes in...

- Catheter began to distort at 7cm
- Small incision, grasped at 6cm
- Had pt twist her hips

What goes up must come down; what goes in...???

- Case reports:
 - Catheter placed intrathecally; inability to remove immediately
 - Catheter placed normally; inability to withdraw for depth immediately
 - Difficulty persisted for 3 days until finally removed
 - Catheter pulled with hemostat; broke at grip site

Measures to remove entrapped catheter

- Don't force
- Gently tighten knot
- Lateral position or same as insertion
- Don’t use instruments
- Give “rest time” (hours or days)
- Steady, progressive traction
- Injection of saline to R/O knot
- GA with muscle relaxants

Summary

- In spite of safety with regional techniques, proper placement of epidural catheters can be challenging, even in cases of uneventful insertion.
- Avoid complications
 - Distend space with saline
 - Lateral position/soft up to reduce vein cannulation
 - CSF for placement verification
 - Limit insertion depth
- Secure to non-moveable anchor, but not before soft tissue shifts
- Recognize limitations of test doses/Every dose is a “test dose”
- Intrathecal placement now more commonly left in place instead of replaced

Arrow Flex-tip catheter

- In contradistinction to “Buenos Aires” catheters, the Arrow Flex-tip catheter has distinct properties.
- The Arrow Flex is a “pillow-top” technique that allows for greater flexibility and reduced pressure on the insertion site.
- It is designed to minimize the risk of vein damage and soft tissue trauma.
- Injection of saline is recommended to help dislodge the catheter from the vein.
- If necessary, gentle traction can be applied, but care must be taken to avoid excessive force.

Summary

- Soft catheters reduce intravascular placement and paresthesias, but are more likely to become lodged and subsequently break
- High index of suspicion for catheter failure
 - Break-through pain/spotty block
 - Lots of top-up doses
 - Large patient size
- Lodged catheters should be removed conservatively
 - Lateral position
 - Gentle, steady pressure
 - Position change
 - Saline injection