Problems with Prematurity

Part I: Physiology & Pathophysiology

Nate Jones, CRNA, MSN
Texas Children's Hospital
Instructor, Department of Anesthesiology
Baylor College of Medicine
Objectives

• Describe common problems associated with premature birth as they relate to the brain, eyes, lungs, heart, gut, and thermoregulation

• Review anesthetic implications as they pertain to problems of prematurity
Conflicts of Interest

• None
Common Complications of Prematurity

- Intraventricular Hemorrhage
- Post-hemorrhagic Hydrocephalus
- Periventricular White Matter Injury
- Retinopathy of Prematurity
- Bronchopulmonary Dysplasia
- Apnea of Prematurity
- Patent Ductus Arteriosus
- Necrotizing Enterocolitis
- Hypothermia
Prematurity

<table>
<thead>
<tr>
<th>Gestational Age</th>
<th>Prematurity Group</th>
<th>Birth Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>36-37 Weeks</td>
<td>Borderline Premature</td>
<td>< 2500 g</td>
</tr>
<tr>
<td>31-35 Weeks</td>
<td>Moderately Premature</td>
<td>< 1500 g</td>
</tr>
<tr>
<td>24-30 Weeks</td>
<td>Severely Premature</td>
<td>< 1000 g</td>
</tr>
</tbody>
</table>

Peiris & Fell. 2009
Figure 4. Preterm birth rates, by race and Hispanic origin of mother: United States, 2007–2014

Factors Associated with Preterm Birth

Social, Personal, and Economic Characteristics
- Low or high maternal age.
- Black race.
- Low maternal income or socioeconomic status.

Medical and Pregnancy Conditions
- Infection.
- Prior preterm birth.
- Carrying more than 1 baby (twins, triplets, or more).
- High blood pressure during pregnancy.

Behavioral
- Tobacco and alcohol use.
- Substance abuse.
- Late prenatal care.
- Stress.

Head Problems
Intraventricular Hemorrhage (IVH)

- Incidence and severity inversely related to gestational age
- Germinal matrix
- Causes of IVH are multifactorial

Peiris & Fell (2009); Ballabh (2010)
Robinson (2012). J Neurosurg Pediatrics
Post-hemorrhagic Hydrocephalus (PHH)

- Increase in the amount of CSF due to impaired reabsorption
- Exact mechanism of PHH is not understood
- Ventriculoperitoneal (VP) shunt is the current most common treatment mode for PHH

Robinson (2012)
Anesthetic Implications for VP Shunt

• Supine or slightly lateral position
• Elevate HOB if ICP ↑
• If ICP ↑, hyperventilate to PaCO₂ 25-30 mm Hg

http://radiopaedia.org/cases/neonatal-ventriculoperitoneal-shunt

Gregory & Andropoulos (2012)
Periventricular White Matter Injury

• VLBW (<1500 g) especially at risk
 – 10-15% diagnosed with cerebral palsy
 – 25-50% have cognitive, attentive, behavioral, or socialization problems

• “Encephalopathy of prematurity”

• Pathophysiology incompletely understood

• Cause is multi-factorial

Cerebral Palsy

- Non-progressive, changing
- Movement and posture disorder
- Spastic quadriparesis is most common
- Multifactorial, but hypoxia

Anesthetic Implications for Cerebral Palsy

- Secretions
- Positioning
- GERD
- Scoliosis
- Hypothermia
- Succinylcholine

Retinopathy of Prematurity (ROP)

- Progressive overgrowth of retinal vessels
- Can lead to intraocular hemorrhage
- Retinal hypoxia
 - Vascular Endothelial Growth Factor production
 - vascular proliferation
 - hemorrhage → retinal detachment

McCann & Soriano (2014), Gregory & Andropoulos (2012)
Retinopathy of Prematurity (ROP)

- Oxygen is a major contributing factor
- \(\text{PaO}_2 \) 150 mm Hg for as little as 1-2 hours has caused ROP!
- Preterm infants whose \(\text{SaO}_2 \) was kept between 80-96% had less ROP than those with higher \(\text{SaO}_2 \)

McCann & Soriano (2014), Gregory & Andropoulos (2012)
<table>
<thead>
<tr>
<th>Stage of ROP</th>
<th>Events</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mildly abnormal blood vessel growth</td>
<td>Resolves on its own</td>
</tr>
<tr>
<td>2</td>
<td>Moderately abnormal blood vessel growth</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Severely abnormal blood vessel growth</td>
<td>Treatment at this point has a good chance of preventing retinal detachment</td>
</tr>
<tr>
<td>4</td>
<td>Partially detached retina</td>
<td>If the eye is left alone at this stage, the baby can have severe visual impairment and even blindness</td>
</tr>
<tr>
<td>5</td>
<td>Completely detached retina</td>
<td></td>
</tr>
</tbody>
</table>
Anesthetic Implications for ROP

• Unknown if exposure to $\uparrow \text{FiO}_2$ can worsen pre-existing ROP
• Better to target a lower SaO_2 (i.e. 87-92%)
• Avoid N_2O in case surgeon injects air into eye

Gregory & Andropoulos (2012)
Heart and Lung Problems
Stages of Lung Development, Potentially Damaging Factors, and Types of Lung Injury.

Bronchopulmonary Dysplasia (BPD)

- Impaired alveolar growth
- Airway inflammation
- Dysplastic pulmonary vasculature
- Enlarged alveoli
- Fewer alveoli
- Decreased septation

Decreased septation → Alveolar Hypoplasia → Fewer, larger alveoli → DECREASED GAS EXCHANGE

Pediatric Anesthesiology
Comparison of Normal Lungs and New BPD

A. 5-month-old infant born at term.
B. Infant who has BPD, born at 28 weeks’ gestation, lung biopsy at 8 months.

Jobe, A. NeoReviews Vol.7 No.10 2006 e531 2006.
<table>
<thead>
<tr>
<th>Severity of BPD</th>
<th>Oxygen Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>Now on Room Air</td>
</tr>
<tr>
<td>Moderate</td>
<td>Now needs < 30% FiO₂</td>
</tr>
<tr>
<td>Severe</td>
<td>Now needs ≥ 30% FiO₂ and/or Positive Pressure Ventilation</td>
</tr>
</tbody>
</table>

For babies born at < 32 weeks’ GA who are assessed at hospital discharge or 36 weeks PCA, as having needed oxygen supplementation for at least 28 days

Gregory & Andropoulos (2012)
Pulmonary Arterial Hypertension (PAH)

- PAH = mPAP > 25 mm Hg at rest
- Triggers for PAH crisis
- Clinical picture of hemodynamic deterioration: RV failure

RV failure

↓coronary perfusion

↑RV wall stress

↑RVEDV

R to L septal shift

↓CO ↓MAP

↓LV performance / SV

Self-perpetuating Cycle of PAH Crisis

Pulmonary Arterial Hypertension (PAH)

• Signs and symptoms
 – dyspnea
 – pallor
 – cyanosis
 – syncope
 – bradycardia
 – RV heave
 – bronchospasm

Friesen & Williams (2008)
Goals & Treatment for PAH Crisis

↑ oxygenation
↓ pulmonary vasoconstriction
↑ systemic pressure, perfusion

(Petros & Pierce, 2006)
Goals & Treatment for PAH Crisis

↑ oxygenation
 • give oxygen

↓ pulmonary vasoconstriction
 • hyperventilate
 • pulmonary vasodilators
 • relieve noxious stimuli

↑ systemic pressure, perfusion
 • fluid, inotropes, vasopressors

Anesthetic Drugs and PAH

- Benzodiazepine
- Opiate
- Volatile agents
- Propofol
- Ketamine

Friesen & Williams (2008)
Hemodynamic response to ketamine in children with pulmonary hypertension

Departments of Anesthesiology and Pediatrics (Cardiology) and the Heart Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Denver, CO, USA

What is already known
- In children with pulmonary hypertension, ketamine administration has been associated with significant increases in pulmonary artery pressure and vascular resistance in some studies and insignificant changes in others.
- Factors such as airway management and co-administration of pulmonary vasodilators have been incompletely controlled in several prior studies of ketamine and pulmonary hypertension.

What this article adds
- Under controlled airway and ventilation conditions without co-administration of pulmonary vasodilating anesthetics, ketamine was not associated with significant changes in pulmonary hemodynamics in children with pulmonary hypertension.
Apnea of Prematurity

• Considered pathologic when
 – Cessation of breathing for > 20 seconds
 – Cessation of breathing for < 15 seconds with bradycardia, cyanosis, pallor, or hypotonia

• Central and obstructive, or both

Apnea of Prematurity

• Central apnea
 – diminished response to hypercapnia
 – ventilatory depression due to hypoxia

• Obstructive apnea
 – nasal occlusion
 – occlusion of hypopharyngeal soft tissues

Peiris & Fell (2009)
Apnea of Prematurity

- Underlying problem is immature CNS!
- Exacerbated by:
 - anemia (Hgb < 10 mg/dL)
 - hypoxia
 - hypo- or hyperthermia
 - intracranial hemorrhage
 - opioids
 - ANESTHETIC DRUGS

Gregory & Andropoulos (2012)
What can we do?

• Tactile Stimulation (DO wake the baby!)
• Oxygen
• Continuous positive airway pressure (CPAP)
• Methylxanthine
 – caffeine (5-10 mg/kg)
• Intubation with mechanical ventilation

Gregory & Andropoulos (2012)
Patent Ductus Arteriosus (PDA)

- 50% of full-term infants close PDA within 24 hours
- Gestational age ≥ 30 weeks close PDA within 96 hours
- PDA in younger neonates may remain open
- Symptoms appear in 3rd-5th DOL

Gregory & Andropoulos (2012)
Degree of shunting depends on

- Size of PDA
- Ratio of PVR:SVR

Andropoulos et al. (2015)
Anesthesia for an infant with known PDA

- Large volume IV access
- Warming device
- Avoid triggers for ductal re-opening

McMann & Soriano (2014)
Other Problems
Necrotizing Enterocolitis (NEC)

- NEC primarily affects preterm infants
- Age of onset is inversely related to PMA
- More than 85% of NEC cases occur in VLBW or very premature (< 32 weeks) infants
- 10-50% mortality

Sharma & Hudak (2013)
What causes NEC?

• Inflammatory response

• Interaction between milk substrate, microbes, immature immune system
 – oral feeding
 – excessive feeding
 – overgrowth of normal flora

• Hypoperfusion

Sharma & Hudak (2013)
Aggressive feeding

Milk stasis

Intestinal dilation

Inflammation & necrosis
Signs of NEC

• Early signs
 – feeding intolerance (vomiting)
 – increased work of breathing
 – lethargy
 – temperature instability

• Late signs
 – hypotension (shock)
 – abdominal distention, bloody stool
 – apnea
 – thrombocytopenia / coagulopathy

Cote et al. (2009, Gregory & Andropoulos (2012))
Hypothermia

• High surface area : body weight
• ↓ brown fat stores
• Non-keratinized skin
• Flaccid, open posture
• Dry gases in the operating room

Peiris & Fell (2009), Gregory & Andropoulos (2012)
A. Conduction

B. Convection

C. Evaporation

D. Radiation

Consequences of Hypothermia

• Increased metabolic rate
• Periodic breathing or apnea
• Metabolic acidosis
• Hyperglycemia
• Delayed drug metabolism

Measures to conserve heat

- Uncomfortably warm operating room (78-86°)
- Heat lamps over the bed
- Covering the patient with clear plastic
- Cap on the head
- Forced air warming device
- Warming pad on the table
- Warmed prep solution

Gregory & Andropoulos (2012)
References

References

References

