Current Thinking on Aspiration Pneumonitis

Michael Rieker, DNP, CRNA
Director, Nurse Anesthesia Program
Wake Forest University Baptist Medical Center
Winston-Salem, NC

Definitions
- Aspiration
- Aspiration Pneumonitis
- Aspiration Pneumonia

Components of aspiration pneumonitis and pneumonia
- Regurgitation
- Aspiration
- Composition of Material

Pathophysiology of pneumonitis
- Immediate irritation
- Atelectasis
- Inflammation
- Infiltration

Sequelae of Aspiration

Clinical Presentation
- Hypoxemia
- Inc PIP
- Dyspnea, bronchospasm, laryngospasm
- Adventitious lung sounds
- CXR: Infiltrates in dependent lobes
- Differential: PE, allergic bronchospasm, mechanical ETT obstruction
Patients at Risk for Aspiration

- Debilitated
- Morbid Obesity
- Gastroparesis
- Hiatal Hernia
- Narcotics
- GI Obstruction
- Esophageal Disorder
- Pregnant
- Decreased LOC
- Difficult Airway

Don’t see the forest for the trees

Why is it a problem under anesthesia?

- Unconsciousness impairs protective reflexes
- Both lower and upper esophageal sphincter tone reduced by anesthesia
- Upper airway reflexes continue to be significantly impaired for 2 hours after recovery from anesthesia.
- Electrolyte abnormalities and hyperglycemia impair gastric motility

Mendelson’s syndrome

"A survey of New York Lying-in Hospital records of patients that aspirated gastric contents during obstetric anesthesia revealed the following different diagnoses: meningitis, massive atelectasis, partial atelectasis, diaphragmatic hernia, aspiration pneumonia, bronchopneumonia, lobar pneumonia, virus pneumonia, atypical pneumonia, tuberculosis, pneumonia, meningitis, pneumoconiosis, pneumothorax, foreign body aspiration, pulmonary embolism, and pernicious anemia.

Risk Factors - Mendelson’s

- Gastric pH < 2.5
- Gastric volume > 25ml or 0.4 ml/kg

Problem-based prevention

- Barrier pressure reduction
 LES pressure is raised by succinylcholine, metoclopramide, cholinergic drugs
 LES pressure reduced by anticholinergics, ganglion blockers, theophylline, thiopental, opioids, cricoid pressure, and beta-adrenergic agonists.
Have we been following the correct procedures?

- Cricoid pressure?!!!
- “Although the use of cricoid pressure seems to make intuitive sense, its scientific basis is weak at best and lacking at worst.”

Have we been following the correct procedures?

- Sellick’s 1961 article
- How applicable?
 - Patients in head-down tilt
 - Did not control for quality of induction
 - No qualitative data on amount of force applied
 - Not randomized
 - Published under “preliminary communications”

Have we been following the correct procedures?

- Upper esophageal sphincter tone decreases after induction
- Cricoid pressure reduces tone of lower esophageal sphincter

Have we been following the correct procedures?

- Problems applying concept of cricoid pressure
 - Distorts anatomy and displaces esophagus
 - Can make laryngoscopy difficult
 - 10% of clinicians have experienced regurgitation in spite of pressure (Anaesthesia 38:457. 1983)
 - 25% of aspiration claims in ASA database had cricoid pressure applied (Engelhart & Webster Pulmonary aspiration of gastric contents. Br / Anaes 1998 63:455-460.
 - Procedure incorrectly applied in 50% of cases (Anaesthesia 38:457. 1983)

A continuing controversy

- “New Explanation for Controversial Old Patient-Care Technique to Prevent Regurgitation”
 - Anes-Anal 11/09
Does the endotracheal tube really protect the airway?

- Cuff may become more effective during positive-pressure breath, but less effective between breaths.
- Cuff pressure ideally maintained 20-30 cm H2O.
- CPAP and PEEP help reduce fluid movement past cuff.

Other endotracheal tube options

- Silver-coated tubes reduce biofilm formation
- Polyurethane cuff

Example of how tapered cuff reduces channeling

Does the endotracheal tube really protect the airway?

"ETT cuff as protective as you think?"

How about the LMA?
- Would you use the LMA on a ventilated patient?
- Would you use a LMA for a tonsillectomy?

Does the LMA do anything to protect the airway?

Problem-based prevention
- Gastric dysmotility
 The use of alcohol, anticholinergics, or opioids can increase the risk of regurgitation by reducing gastric motility.

Problem-based prevention
- Medication Effects
 LES tone is reduced by: nicotine, caffeine, alcohol, theophylline, beta-adrenergic agonists, thiopental, calcium-channel blockers, and nitrates. Drugs which reduce the formation of bicarbonate-rich saliva indirectly contribute to gastric acidity. These drugs include some antihypertensives, antihistamines, anti-depressants, and anticholinergics.

Problem-based prevention
- Reduced protective reflexes
 Avoid opioids where risk of obtundation exists prior to securing airway

 Increase attention to residual relaxation post-op

Xerostomia- Drugs

<table>
<thead>
<tr>
<th>ANTIHYPERTENSIVE</th>
<th>ANTI DEPRESSANT</th>
<th>ANTI CONVULSANT</th>
<th>ANTI ANXIETY</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVE</td>
<td>Anafranil</td>
<td>Felbatol</td>
<td>Atarax</td>
</tr>
<tr>
<td>Capoten</td>
<td>Asendin</td>
<td>Lamictal</td>
<td>Vistaril</td>
</tr>
<tr>
<td>Calapres</td>
<td>Elavil</td>
<td>Neurontin</td>
<td>Ativan</td>
</tr>
<tr>
<td>Coreg</td>
<td>Luvox</td>
<td>Tegretal</td>
<td>Centrax</td>
</tr>
<tr>
<td>Ismelin</td>
<td>Norpramin</td>
<td></td>
<td>Equanil</td>
</tr>
<tr>
<td>Minipress</td>
<td>Prozac</td>
<td></td>
<td>Miltown</td>
</tr>
<tr>
<td>Serpasil</td>
<td>Sinequan</td>
<td></td>
<td>Librium</td>
</tr>
<tr>
<td>Wytenrin</td>
<td>Tofranil</td>
<td></td>
<td>Paxipam</td>
</tr>
<tr>
<td></td>
<td>Wellbutrin</td>
<td></td>
<td>Serax</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Xanax</td>
</tr>
</tbody>
</table>
Problem-based prevention

- Regurgitation Risk
 - airway difficulties, obesity, pregnancy, and lithotomy or prone positioning
 - Pregnant patient risks: Mechanical and hormonal
 - increase in gastric acid production
 - decrease in LES tone
 - epidural opioids reduce gastric emptying time

Pharmacologic Prophylaxis

- Various Modalities:
 - Diminish gastric acid volume
 - NPO status
 - Clear liquids up to 2 hours pre-op does not increase gastric contents or acidity

NPO Guidelines

Preoperative Fasting Guidelines for various foods

- Clear Liquid
- Breast Milk
- Light Meal
- Animal Milk
- Infant Formula
- Fatty Meal

Minimum Hours Preoperatively

H2 Blockers- Important Facts

<table>
<thead>
<tr>
<th></th>
<th>Dosage IV</th>
<th>Dosage PO</th>
<th>Duration (IV)</th>
<th>Pregnancy Cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Famotidine</td>
<td>20 mg</td>
<td>20 mg</td>
<td>12 hour</td>
<td>B</td>
</tr>
<tr>
<td>Ranitidine</td>
<td>50 mg</td>
<td>150 mg</td>
<td>8 hour</td>
<td>B</td>
</tr>
<tr>
<td>Cimetidine</td>
<td>300 mg</td>
<td>400 mg</td>
<td>4 hour</td>
<td>B</td>
</tr>
<tr>
<td>Nizatidine</td>
<td>150 mg</td>
<td></td>
<td>12 hour (PO)</td>
<td>C</td>
</tr>
</tbody>
</table>

Pediatric Dosages

*Note: H2 Blockers are not FDA approved for pediatric use.

<table>
<thead>
<tr>
<th></th>
<th>Dosage IV</th>
<th>Dosage PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Famotidine</td>
<td>0.4 mg/kg/dose q12h</td>
<td>0.4 mg/kg/dose q12h 0 mg</td>
</tr>
<tr>
<td>Ranitidine</td>
<td>1.5 mg/kg/dose q6h</td>
<td>1-2.5 mg/kg/dose q8h</td>
</tr>
<tr>
<td>Cimetidine</td>
<td>5-10 mg/kg/dose q6h</td>
<td>5-10 mg/kg/dose q 6</td>
</tr>
</tbody>
</table>
H2 Blockers - Other considerations

- **Cimetidine**: inhibits the cytochrome P-450 potential for interactions with theophylline, warfarin, lidocaine, and phenytoin
- **Famotidine**: no drug interactions, less adverse effects, long duration, less cost
- **Ranitidine**: thrombocytopenia possible with prolonged use

Proton Pump Inhibitors

- **Directly reduce acid output from parietal cells**
- **Omeprazole**:
 - *Prilosec*
- **Lansoprazole**:
 - *Prevacid*
- **Pantoprazole**:
 - *Protonix*
- **Esomeprazole**:
 - *Nexium*
- **Rabeprazole**:
 - *Acifex*

Proton Pump Inhibitors

- Generally more effective than H2 blockers
- Slower ramp up to max. effect.
 - At least 2 hours to full effect
 - 3 days for max effect in chronic use

H2 Blockers vs. PPIs

- **Placebo**
- **Famotidine 20 mg**
- **Omeprazole 10 mg**
- **Ranitidine 50 mg**

PPIs - Other considerations

- Yet another controversy
- Gastric acid inhibits bacterial growth
- ICU patients on pantoprazole showed 3x rate of pneumonia vs. those on ranitidine
- (834 patients reviewed - Miano et. al. *Chest* 2009)
- Consider benefits of short-term (perioperative) vs. long-term use.

Direct Antacids

- **Sodium Citrate**
- **Sodium Citrate + Citric Acid (Bicitra)**

Gastric Prokinetics

- Metoclopramide (Reglan)
- Cisapride (Propulsid) - off market

Novel Approaches

- Lidocaine immediately before or after acid aspiration attenuated lung injury
 (Nishina, K., Mikawa, K., Takao, Y., Ohga, M., Hashawa, K., Odaka, H. Anesthesiology. 88(5):1300-8, 1998 May)
- Hyperoxia worsens lung damage after acid aspiration
- Erythromycin 200mg/day as effective as metoclopramide as gastric stimulant

Cellular response- helpful?

- Neutrophils, humoral mediators respond to treat, but cause much of damage

Pneumonitis Treatment

- Therapy depends upon severity of symptoms
- Initial course is prognostic
- Majority do not require treatment beyond supportive care
- Even with fever, leukocytosis, & infiltrate, antibiotics are not always indicated
Pneumonitis Treatment

- ORAL suctioning
- Oxygen as needed (enough, but not too much)
- If ventilation required, include PEEP
- Bronchodilators
- Neutrophil aggregation inhibitors
- Antibiotics - many regimens, tailor to situation

Pneumonitis Treatment - What not to do

- Tracheal/bronchial suctioning
- Overzealous oxygen administration
- High dose volatiles as bronchodilators

Experimental/emerging treatments

- Pentoxifylline administration shortly after acid instillation results in significant alleviation of impaired oxygenation, stabilization of BP with higher heart rates, and improved survival after 6 h.
- JTE-607 can inhibit the production of inflammatory cytokines such as tumor necrosis factor-α, interleukin-6 and cytokine-induced neutrophil chemoattractant and attenuate acid-induced lung injury in rats.
- Sivelestat at 1 mg/kg/h inhibits neutrophil elastase. 20% more patients off ventilator at 20 days out.

Antibiotic Recommendations

- Pneumonitis symptoms > 48 hours?
 - Yes
 - Levofoxacin 500 mg/day OR Ceftriaxone 1-2 gm/day
 - No
 - Risk factors for pneumonia or documented pneumonia?
 - Yes
 - An aerobiotic coverage needed?
 - Yes
 - Piperacillin/Tazobactam 3.375 gm q6h OR Ceftazidime 2 gm q8h
 - No
 - Supportive care
 - No
 - Levofloxacin 400 mg bid OR Piperacillin/Tazobactam 3.375 gm q6h OR Ceftriaxone 1-2 gm/day

- CXR of patient following GI bleed and witnessed aspiration.
 - 2nd film 2 days later.
Summary

- Aspiration pneumonitis - chemical irritation of lung, usually caused by gastric acid
- Variety of medical conditions predispose; don’t focus on Mendelson’s
- Prevention focuses on one or all 3 components
 - Regurgitation
 - Aspiration
 - Caustic composition of material

- Majority are asymptomatic - 2 hours to “out of the woods”
- Conservative treatment usually indicated
 - No benefit to tracheal suctioning for non-particulate aspirates
 - Lido as neutrophil inhibitor
 - Antibiotics only if indicated
 - No steroids
 - Oxygen only as needed